
ttkkk

Broadcast Spatial Join faster than

Distributed Spatial Join for trajectory enrichment
Georg Heiler, Allan Hanburry

Introduction
•	More and more geospatial data is being proessed (IoT, 5G)
•	Established tooling cannot scale
•	Hadoop/Spark based implementaions promise to handle the
load. But a naive implementation would be infeasible due to
high load

•	Multiple libraries implementing a distributed spatial join on
spark exist

•	Use Case: enrich trajectories with point of interest (POI)
information

Experimental Setup
•	Data is simulated with exponentially increasing load
•	Multiple use cases (number of events per user, number of
periods) are generated

•	3 methodologies are implemented
1.	GeoSpark non data locality preserving (default) only
inner join. Time to un-nest the input is not counted

2.	Geospark locality preserving. Unnesting and aggregation
afterwards are included as well as a left join

3.	broadcast spatial join.

Results
•	When considering 200 events per user for 3 periods and 10k
POI, the broadcast spatial join is the fastest in most cases, but
the advantage is diminishing for very large data sets

•	When increasing the load per user the advantage of (3)
increases

Summary

•	A generic framework like geospark is useful in many cases
•	For specific problems like trajectory enrichment with POI data

a broadcast spatial join is more
efficient

v

@geoheil			 heiler@csh.ac.at		 github.com/complexity-science-hub/distributed-POI-enrichmentt

200 events per user per period for 3 periods. Load of users (x
axis), processing time shown in logarithmic scale (y axis) for the
3 different implementations of a spatial join. Each one was run 5
times. The graph shows the mean and 95% confidence intervals
as error bars.

Increased number of events per user to 2000 events per period
for 3 periods. Load of users (x axis), processing time shown in
seconds (y axis), 5 runs each.

200 events per user per period. Increased number of periods to
300. Load of users (x axis), processing time as shown in logarith-
mic scale (y axis). For each methodology 5 runs were computed.

This work was supported by the Austrian Research Promotion Agency FFG under grant # 857136.

