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Abstract

Time-series are becoming more and more important in the digitized industry 4.0. From
forecasting of sales to increase the profit in retail industry, to real time streamed analysis for
fraud detection, intrusion-detection, to medical applications e.g. combination of different
time series (ECG, Blood, ...) for improvement of diagnoses, to applications in stock market.
This work presents an overview of different application contexts of time-series clustering as a
very hands-on, tutorial-like approach. Clustering time-series is often used to gain insight into
the generating mechanism of the data in order to predict future values.
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CHAPTER 1
Introduction

1.1 Overview
Clustering means identifying structure in an unlabeled set of data by segmenting it into groups
of homogeneous values. As (WarrenLiao2005) explains, clustering can be used for any kind
of input, but as they conclude “the bulk of clustering analyses has been performed on static
data”. There, static means that the values of features are constant over time. Usually it is
possible to associate one object with a single cluster. Similar to clustering static data the
choice of algorithm “depends on the type of data available as well as the particular purpose”
(WarrenLiao2005). Several types of data can be differentiated:

• discrete: discrete-valued values (integers) are analyzed

• real-valued: e.g. sensor output which outputs non-discrete values

• uniformly sampled: the sample rate of the data is constant e.g. stock market

• non-uniformly sampled: variable sample rate e.g bank account transactions. For most
clustering applications non-uniformly sampled data has to be normalized /converted
into uniform data

• univariate: only one feature

• multivariate: multiple features

• length of the time-series: the length of the series may be equal or not. This has an
impact on how a clustering algorithm works.

Generally speaking, there are three types of clustering algorithms: raw-data based (either
frequency or time domain), feature based and model based (Rani2012). Time-series data
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becomes more and more prevalent in a digitized industry, as more data is measured and
analyzed in a time context.

From forecasting of sales to increase the profit in retail industry, to real time streamed
analysis for fraud detection, intrusion-detection, to medical applications e.g. combination of
different time series (ECG, Blood, ...) for improvement of diagnoses, to applications in stock
market.

A lot of interesting problems for time-series mining are shown in Figure 1.1. What they

Figure 1.1: Similarity matching as the basis of a lot of time-series mining problems
(Keogh2006a).

have in common is most of them require matching of similarity. Thus, clustering clustering
plays a key part in a variety of problems related to time-series.

This work presents an overview of the different applications of clustering time-series as a
very hands-on, tutorial-like approach. Clustering whole time-series as well as subsequences
will be explained.

In general there are two use cases for clustering: stand-alone to get insight into the
distribution of the data. Secondly it may be used for preprocessing the data to analyze the
result with other algorithms (clustering101). As such clustering time-series is often used
to gain insight into the generating mechanism of the data in order to predict future values
(Martinez-Alvarez2011).

Major problems regarding time series data mining are:

• high dimensionality
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• temporal order

• noise & missing values

• different sampling rates

• subjectivity of similarity

Keogh2006a concludes that three important issues are involved here:

• data representation. Efficient processing of time-series whilst retaining its essential
characteristics

• similarity measurement. How can an intuitive measure of distance be formulated?

• indexing method. Structuring of a large set of time-series for fast querying

All three are key components of time-series mining systems. However, indexing will be
out of scope of this work.

When approaching a problem of time-series mining, especially for prediction but also
important for clustering, one has to decide whether a “black-box” solution such as a domain-
independent pattern recognition system or a system based on domain knowledge should be
used. Keogh2006a explains the difference as follows:

• “Black Box: Predict tomorrow’s electricity demand, given only the last ten years
electricity demand."

• "White Box: Predict tomorrow’s electricity demand, given the last ten years electricity
demand and the weather report, and the fact that the world cup final is on and ...”

It is apparent that a “black-box” system would have many advantages especially regarding
usability, however in the recent years there have been only few attempts to solve this complex
problem as Keogh2006a claims. Surprisingly, noDomainKnowledgeNeeded can show how
successful Data Science can be sourced out to many people without domain knowledge.
Competitions like Kaggle and KDD have proven that human ’black-box’ systems can function
very well.

1.2 General Thoughts
There are some general purpose clustering algorithms ready to use available even for clustering
time-series. The only thing they need as an input is a reasonable distance matrix. There are
some special dissimilarity measures for time-series. First we would like to introduce several
ways of representing time-series, then explain dissimilarity measures which are the core part of
a lot of clustering algorithms. We will focus on distance measures which are mostly used for
time-series. Then we will explain some general, not necessarily time-series related clustering
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approaches. The main part explains how to apply these for clustering time-series in several
ways.

For enabling simpler and quicker processing, time-series usually have to be represented in
a different format than CSV files.

1.2.1 Representation of time-series
Time-series are basically high dimensional data. Dealing directly with such complex data
in a raw and uncompressed format is extremely expensive. Both in terms of storage coast
and processing power. Therefore developing representation techniques which allow to reduce
dimensionality of time series, while still preserving fundamental characteristics of the data
is highly desirable. To enable fast processing it may be favorable to have different types of
representation, depending on how the data is accessed (disk, tape or RAM).

Micro representation

The main idea is to compress the size of the data in order to fit in memory, but still
retain the important features. An overview of the techniques is given in 6.1. Often,
segmentation is used in order to summarize a time-series whilst still retaining its dom-
inant features. Some of these approaches for representation are not adaptive to the
data like Piecewise Linear Approximation (PLA) (Shatkay1996) or Piecewise Aggregate
Approximation (PAA) (YiB2000; Keogh2001b). Wavelets (generaltimeseries) are the
more modern approach of the Discrete Fourier Transformation (DFT) (Bartolini2005).

Figure 1.2: DWT only
needs very few coefficients
to represent a time-
series(generaltimeseries).

Discrete Wavelet Transformation (DWT) introduced by
Shatkay1996 perform a scale-wise decomposition of time-series
in such a way that only few coefficients are needed to represent
the whole series. The original series is replaced by its wavelet
approximation. As shown in Figure 1.2 only few Haar wavelets
are needed to represent the time-series. The Haar wavelet is
very popular and simple to use. Contrary to DFT, localized
wavelets are used for the representation of the data and they
capture both frequency and information about the location.
One more point in favor of DWT is the optimal compression
algorithm proposed by Zhang2006 Efficient dimensionality re-
duction and preservation of as much original data as possible
is automatically balanced. generaltimeseries tested on 65
datasets and all of these methods are the same on average. He
concludes that in fact for 80% of the datasets the approaches
are all within 10% of each other.

Symbolic Aggregate Approximation (SAX) (Lin2003)tries
to symbolize the series. It is based on the same approach as
PAA. The idea is to transform the search for similarity into
a problem of finding subsequences in symbolic sequence data.
Shieh2008 improved this method to support fast indexing. It

4



is called indexed Symbolic Aggregate Approximation (iSAX)
and allows faster querying of time-series.

Loïc Dutrieux https://github.com/dutri001/bfastApp
offers an interesting application to explore the segmentation if
irregular time-series interactively.

Macro representation

Recently, more and more time-series data was collected and the term temporal database was
shaped. The idea is that the database system in itself especially supports the storage of
time-series. It promotes a multi-faceted view of time.

A simple use-case for such a database would be the storage of addresses. For some, storing
only the current address is enough. Nevertheless, a lot of organizations need to track historical
data. A temporal database would allow for these applications and support special queries
to cope with these concepts of time. In SQL:2011 some basic temporal functionality was
standardized. However, this standard is not yet widely adopted. Commonly used databases
like Postgres or Oracle often only implement only parts of this standard (temporalDBMakro).
For especially long time-series (tsdatabases) recommends using Apache HBase or MapR-DB
and explains why classical RDBMS are not sufficient.

Nearly every clustering algorithm requires a measurement of the distance. Depending on
the type of data a specific measure will be more appropriate than another.

5
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CHAPTER 2
Dissimilarity measures for time-series

The function used for computing the distance is a key component of the clustering al-
gorithm. It is not only important for the sole purpose of clustering but also critical for
classification and regression of time-series. As shown in Figure 2.1, similarity is subjective.

Figure 2.1: Similarity can be confus-
ing (Keogh2006a).

Thus it is important to find some objective and con-
sistent means of similarity or dissimilarity between
time-series. A similarity measure should provide the
following attributes (Esling2012):

• consistent with human intuition

• recognition of similar objects even though they
are not identical

• emphasis on salient features on local and global
scale

• universally usable, meaning no restrictions for
time series are assumed

• abstraction from noise and invariant to a set of
transformations

In the literature several types of transformations
are known: scaling, warping, additive noise and added
outliers at random positions. The dissimilarity measure should be robust to combinations of
these types of transformation. There are different possibilities to structure these measures.
One approach is to differentiate four categories to measure dissimilarity:

• shape based
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• edit based

• feature based

• structure based

Another - more mathematical - approach is to structure dissimilarity measures based on
whether they are metric like Euclidean or non-metric like dynamic time warping (Dynamic
Time Warping (DTW)).

In the following section we will give a brief introduction about the different types of
measures.

In the following section X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) will be time-series
of equal length.

2.1 Shape based distance
Shape based distance measures compare the overall shape of the data.

2.1.1 Lp norms
A classic and well understood distance is the euclidean distance, in general known as Lp
norms (Minkowski Distance). As (Keogh2003a) points out, it is even one of the most widely
used measures. Humans abstract the aforementioned types of transformation intuitively when
observing characteristics of a time-series. The Euclidean distance is simple but can not provide
such a high level of abstraction. A further downside is that Lp norm based measures are rigid
metrics. This may be good for some applications but time-series of different lengths are not
supported. However, as (Shieh2008) have shown, Lp based measures "provide advantages
in the case of very big data sets, as there is a larger probability that an almost exact match
exists in the database”.

dLP
(X,Y) = p

√√√√ N∑
k=1

(xk − yk)
1
p

In case p = 1 it is named Manhattan distance, in case p = 2 it is called Euclidean
(dE = dL2) and in the generalized case of 1 < p <∞ it is called Minkowski distance.

2.1.2 Short time-series distance (STS)
The Short Time-Series Distance (STS) proposed by Moller-Levet2003 is a good choice for
short and irregularly sampled time series. They define STS as:

dSTS(X,Y) =

√√√√ N∑
k=1

(
yk+1 − yk
tk+1 − tk

− xk+1 − xk
t′k+1 − t′k

)
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As mentioned already X and Y are two time-series, where t and t′ are their respective
temporal indexes and tk and t′k refer to a certain position in these indices. Both series must
be of equal length. Even though the temporal indexes may start at different positions, their
increments must be equal.

2.1.3 DISSIM distance
Another measure for irregular time series is the DISSIM distance. It was introduced by
Frentzos2007 to overcome the weaknesses of traditional work in similarity query processing.
Earlier work either focused only on the time dimension of trajectories, or only considered
trajectories of the same sampling rate. It did not combine both.

It is based on the definite integral of the Euclidean distance between time-series. To avoid
the expense of calculating the integral, they proposed an approximation:

Dissim_approx(X,Y) =
N−1∑
k=1

(
dExtk

,ytk
+ dExtk+1 ,ytk+1

)
∗ (tk+1 − tk)

Again X and Y are two time-series, Dxt,yt is the Euclidean distance between the series at
the point t out of the global time index T = {t1, . . . , tN}.

2.1.4 Dynamic time warping (DTW)
DTW has been designed to overcome shortcomings of the Euclidean Distance. It was
introduced by Berndt1994 to compare different speech patterns and is highly popular
nowadays. It not only supports the comparison of series of different lengths but is capable of
dealing with a lot of transformations like warping and shifting.

As shown in Figure 2.2, unlike the Lp norms where the time axis is fixed and the sequences
are aligned one to one, DTW enables a non-linear alignment of the sequences. DTW tries to
find the best alignment of the series. The optimal path is defined as the shortest warping
path in the distance matrix (D). The Euclidean distance between a pair of points in time
xk, yk defines D. WarrenLiao2005 explain three restrictions which bound this optimization
problem. A start at D(0, 0) and an end at D(N,M) is forced by the boundary. Where N is
the last index of X and M is the last index of Y. The Rest(?) function takes the not yet
processed time-series as the argument.

dtw(X,Y) =


0, if M = N = 0
inf if M = 0 or N = 0
d(x0, y0) +minDTW (Rest(X), Rest(Y)),
{DTW (Rest(X),Y), DTW (X, Rest(Y))} otherwise

Calculating DTW is rather expensive. Keogh2005 developed a measure which is based on
DTW. However, it utilizes lower bounds via the Sakoe-Chiba band which make it a lot more
efficient. Instead of O(n2) only O(n) is needed for computation.

8



Figure 2.2: Euclidean vs. dynamic time warping. (cs14).

2.2 Edit-based distance
Originally, Edit distance was used to measure the difference between two sequences of strings.
The idea is to transform the initial time-series with a minimal number of insertions, deletions
and transformations into the other. Compensation for outliers is achieved by allowing gaps
in the matching. The following distance measures are classified as common according to
Esling2012; Ding2008

2.2.1 Longest common sub-sequence (LCSS)
Longest Common Subsequence (LCSS) is a prominent example for an edit based measure.
Vlachos2002 proved that LCSS is more robust than DTW under noisy conditions if the
threshold settings are chosen wisely. The calculation of LCSS is based on the following
recursion:

LCSS(X,Y ) =


0, if M = 0 or
N = 0
LCSS(Rest(X), Rest(Y )) + 1, if |x0 − y0| ≤ ε
max{LCSS(Rest(X), Y ), LCSS(X,Rest(Y ))} otherwise

Again X and Y are two time-series and the Rest(?) Function takes the not yet processed
time-series as the argument. As before N is the last index of X and M is the last index of
Y. Usually such a recursion is solved via dynamic programming.

Working with real numbers, there is a problem to find the exact matching point in floating
point arithmetics. Several adaptions have been proposed in literature to cope with this
problem.

2.2.2 Edit-distance for real sequences (EDR)
A common method in computer science for dealing with real (=possibly infinitely long)
numbers in the limited memory of a computer is the e-comparison. This means two points
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are considered equal if the distance is < than a supplied e. Otherwise, the distance itself is
considered. Edit Distance for Real Sequences (EDR) utilizes such a comparison. In contrast
to LCSS penalties are assigned by EDR (Chen2005) depending on the length of the gaps.

2.2.3 Edit-distance with real penalty (ERP)
Edit Distance with Real penalty (ERP) by Chen2004 tries to combine DTW with EDR in
order to have a distance function which supports local time shifting but still is a metric in
the mathematical sense. With some improvements it delivers superb pruning performance
and delivers a noticeable speedup when searching through large time-series databases.

Several extensions of edit based distance have been proposed byMarteau2009; Fuad2008;
Chhieng2007

2.3 Feature-based distance
Instead of calculating the similarity of time-series based on raw values, feature based distances
extract feature vectors and calculate the similarity between these. The advantage is reduced
processing power especially for long time series as only the characteristic features are classified
and less time is wasted dealing with noise. Pearson’s correlation and Cross correlation are
commonly used to select the most important periods of a series. The metrics presented above
deal directly in the time domain. The frequency domain offers some interesting alternatives:
A Fourier coefficients based distance can be defined by the Euclidean distance of the first n
Fourier coefficients. Features can be extracted using different types of correlation, DWT or
simply by extracting recurrent motifs of a series.

2.3.1 Correlation-based distances
A simple example for a correlation based distance metric is the Pearson’s Correlation factor.

COR(X,Y) =

N∑
k=1

(
xk −X

) (
yk − Y

)
√

N∑
k=1

(
xk −X

)√ N∑
k=1

(
yk − Y

)
X and Y are average values of the time-series X and Y.
Golay1998 use Pearson’s Correlation as a building block for a k-means clustering as

follows:
dCOR(X,Y) =

√
2(1− COR(X,Y))

Others like Galeano2000 use an autocorrelation based distance function.

2.3.2 Periodogram-based distances
A simple approach for a spectral dissimilarity measure is the periodogram-based distance
proposed by (Caiado2006). It is simply defined as the euclidean distance of the first
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periodiograms of the time-series. X and Y are two time-series of length N . Let IX(λg) =

N−1
∣∣∣∣∣ N∑k=1

xke
−iλgk

∣∣∣∣∣
2

and IY (λg) = N−1
∣∣∣∣∣ N∑k=1

yke
−iλgk

∣∣∣∣∣
2

be the periodograms of X and Y

at frequencies λg = 2πg
N , with g = 1, . . . , n with n = N−1

2 . Then the Euclidean distance
between them can easily be calculated as:

dP (X,Y) = 1
n

√√√√ n∑
g=1

(IX(λg)− IY (λg))2

In case only the correlation structure is of interest normalization of the periodogram should
be considered. Variance correlates to the spectrum value of corresponding frequencies. Thus
using the logarithm of normalized periodograms can make sense.

Thompson2010 builds on this and proposes a measure based on cumulative version of
the periodograms. He argues that integrated periodograms have several advantages.

2.3.3 Motif-based distances
Similar to other feature-based dissimilarity measures certain features are extracted & fea-
ture vectors compared. Instead of selecting features similar subsets (called motifs) are
selected. This does not directly result in a rigid measure of dissimilarity. However clustering
these motifs for example using them as the initialization of a k-means clustering algorithm
(Phu2011) is possible. Lin2010 describes how motifs are discovered using sub-series joins.
Vahdatpour2009 deals with motif discovery in a multi-dimensional environment where motifs
have temporal, length and frequency variations. Chiu2003 explains how to discover motifs
in a probabilistic way. An example of motifs is depicted in Figure 2.3.

Figure 2.3: Motifs are recurring patterns in a series. (Esling2012)

2.4 Model-based distance measures
Previous methods are not well suited for extremely long time-series. Model based similarity
tries to find higher-level structures on a bigger, more global scale. Prior knowledge about the
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process can be used for improving the measure of similarity. Different types of parametric
temporal models can be used. Hidden Markow Models (HMM) or Autoregressive Moving
Average (ARMA) processes are common. The best result is achieved when the model
fits to the underlying process. Thus, there are a lot of possibilities to parametrize these
models. Some Hidden Markow Model (HMM)’s (Ghassempour2014) deal with clustering
multivariate time-series, others like Wang2011; Strelioff2014 try to use pattern based
Hidden Markov Model (pHMM) in order to utilize patterns for finding the semantics of
time series. Mesot2006 combines AR processes with HMM into a Switching autoregressive
moving average Hidden Markov Model (SAR-HMM). They propose a Bayesian approach
to prevent over-fitting the model in order to compensate for issues faced by AR processes.
Other common model based distances are: Piccolo (Piccolo1990), Maharaj (Maharaj2000)
& Cepestral (Kalpakis2001) -based distances.

2.4.1 Piccolo distance
Piccolo1990 describes a distance measurement which is based on the Euclidean distance
between the AR(∞) operators. He states that the autoregressive part of the stationary
ARIMA process contains most parts of useful information about the processes structure. This
method requires the time-series to be stationary and not contain seasonality.

2.4.2 Maharaj distance
Maharaj2000 defined a distance similar to Piccolo distance. However, here noise is used.

dMAH(X,Y) =
√
N
(
Π′
X −Π′

Y

)ᵀ
V−1

(
Π′
X −Π′

Y

)
Π′
X and Π′

Y are AR(p) parameter estimations of X and Y which are time-series and
AR(p) =

∑p
k=1 a+ φkxN−k + uN . a and φ are two unknown parameters and uN is white

noise. The p is the same as the one selected by Piccolo’s distance. V is an estimation for
the variance of the white noise. The main difference between Piccolo and Maharaj distance
is that Maharaj takes this variance into consideration.

2.5 Prediction-based approaches
All the other dissimilarity measures mentioned before were focused on the past. However in
many applications the main interest of clustering relies directly on clustering the predictions.
An example is a sustainable development project or any situation where it is important to
reach target values on pre-specified future time periods. It is useful to instead of clustering the
past deal with clusters for future values tsclust Alonso2006 propose to measure dissimilarity
as a comparison forecast densities. The variability of predictions is fully taken into account
however their model only supports AR(1) processes. Vilar2010 generalizes this approach.
Lee deals with clustering time-series based on the forecast distributions using Kullback-Leibler
divergence.
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2.6 Compression-based approaches
Many data-mining algorithms require a lot of parameters to be set. This means it is a time
consuming process setting these parameters. But the even bigger problem is that these
parameters have to be chosen in a sensible way. Sometimes only time consuming experiments
lead to the right parameters. compression proposes a compression based dissimilarity
measure which is simpler and easier to use and can compete and sometimes outperform
classic approaches. The proposed algorithm is named CDM and based on Kolmogorov
complexity A downside is that this approach can only deal with high dimensional data.

2.7 Comparison of distance measures
Choosing the adequate measure of distance is important as the efficiency of a clustering
algorithm highly depends on a measure of distance which fits best to the nature of the
analyzed data. For short time series visual methods or shape based methods are meaningful.
If the data is very specific, expert knowledge can be used and model-based approaches
might be better suited. Whereas shape-based techniques deal mainly with local comparisons
and work well with short series, structure-based approaches aim to compare the underlying
dependence structure and can cope with long time-series better. Feature-based approaches
are best used when periodicities are the main focus.

generaltimeseries states that dynamic time warping (DTW) is the best shape based
distance available for short time series so far. For long time-series he recommends two
different approaches depending on prior knowledge. If nothing is known about the data he
recommends compression based distance, if there is some prior knowledge he would try to
leverage it for feature extraction

As shown in Figure 2.4, it can be clearly seen how the choice between shape- and
structure-based similarity influences the clustering result. If similarity is measured based on
geometric similarity, P1 and P2 are forming a mixed cluster. If the underlying correlation
structure is used to identify proximity, P1 and P3 move closer together.

As Esling2012 point out, the accuracy of the similarity distance chosen still has to be
evaluated even when following the aforementioned rules. Keogh2003a have proposed a
time-series data mining benchmark to cope with this problem and to help to better and more
reproducible research. Rooyen tries to improve the theoretical understanding of measuring
the performance of feature learning.
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Figure 2.4: a) shows several time-series generated from patterns p1, p2 and p3. The
Dendograms depict the difference of choosing a b) shape-based distance or a c) structure
based distance for clustering (tsclust).
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CHAPTER 3
Clustering algorithms

Clustering is a task which belongs to unsupervised learning and thus a sub-category of
machine-learning. In contrast to classification where labels are already supplied, for cluster
analysis machines have to learn on their own. In general there are two use cases for clustering:
stand-alone to get insight into the distribution of the data or as a preprocessing step for other
algorithms (clustering101).

Generally speaking, there are three types of clustering algorithms: raw-data based (either
frequency or time domain), feature based and model based. Rani2012 Depending on the
technique used Han2012 differentiate partitioning, hierarchical, density-based, grid, model-
based and probabilistic and generating methods clustering techniques. WarrenLiao2005
applied three of them for time-series.

For real world clustering scenarios often demand the integration of several clustering
methods and thus cannot easily be classified to one category uniquely (Han2012).

3.1 Distance-based partitioning methods
Most algorithms are distance-based, in fact distance based clustering has been most extensively
studied as a branch of statistics (Han2012).

Partitioning approaches like k-means (Vlachos2003), k-medians (Har-peled2004), k-
medoids (Kalpakis2001) and hierarchical algorithms like agglomerative or divisive methods
like Rodrigues2004 are sub categories of distance based clustering algorithms.

Both distance based clustering methods are fairly generic and can be used if a fitting
distance matrix is provided. Often such algorithms are already implemented in your tool of
choice.

Most of the distance functions explained earlier in Section 3 output such a matrix and
thus can be utilized to make use of these generic algorithms in a time-series context.

The interested reader will find a lot more distance metrics in the literature. ButMori2012;
tsclust already implemented a lot of them ready to be used in further research projects.
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3.1.1 Partitioning methods
Partitioning methods often require the number of clusters to be specified up front, like
k-means. In general it is the simplest clustering method. Partitioning methods provide a one-
level grouping of the data. This means each of the k groups must contain at least one object.
This method tries to improve the clustering progressively, like k-means (MacQueen1967).
Jain2010 provides a good overview about modern clustering algorithms. Other methods are
PAM, CLARA and CLARANS. Figure 3.1 explains the main differences between partitioning
and hierarchical methods visually.

Figure 3.1: The difference of partitioning and hierarchical methods is clearly depicted.
Hierarchical methods support a multi-level composition (imagesEamon).

3.1.2 Hierarchical methods
Hierarchical methods provide a multi-level composition of the data. This method was
introduced by Zhang1996 as BIRCH to bypass computational limitations to allow for
clustering data which would exceed the working memory. It can be either agglomerative
(bottom-up) or divisive (top-down). Figure 3.1 explains the agglomerative approach visually.
It can be seen how the clusters grow and subsequent levels of similarity are added. A downside
of using hierarchical clustering is that when a merge or split has been performed it can never
be undone. This may lead to a reduction in computation time, however might not result in
the globally optimal solution.

3.2 Density-based methods
Most clustering methods can only recognize spherical clusters, as they are based on the
distance between objects (Han2012). Density-based clustering can grow a cluster as long
as the number of objects in the neighborhood is above a certain threshold. Thus density-
based clustering easily deals with noise, filters out outliers and can recognize clusters of
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Figure 3.2: Agglomerative clustering explained (imagesEamon).

arbitrary shape. Examples for such methods are DBSCAN (Ester1996; Chakraborty2011)
and AUTOCLUST (Estivill-Castro2001). It builds on DBSCAN but includes dense and thin
bridges which connect clusters.

3.3 Grid-based methods
Instead of dealing with raw values, grid-based methods quantize the objects in a grid-like
space. The main advantage of grid-based methods is that the time needed to perform
clustering is independent of the amount of data but only depends on the size of the grid. As
a result, grid-based methods are often integrated with other methods (Han2012). A good
example is Self Organizing Maps (SOM) (Fu2001).

3.4 Probabilistic and generating methods
Probabilistic and generating methods are often used in conjunction with fuzzy clustering
(Han2012) where one object may be grouped in multiple clusters. Gaussian mixture models
(GMM) (Gorur2010; gaussModel) and expectation maximization (EM) (Xiong2002) are
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good examples for such algorithms. Mixture models assume that observations are drawn from
one of several components and thus can infer the parameters of these. EM tries to find the
maximum likelihood estimations in mixture models. Sometimes (courersaClusterAnalysis6)
probabilistic methods are put as a sub-category of model-based methods as probabilistic
model-based clustering methods.

Iterative progress of a GMM is demonstrated in Figure 3.3.

Figure 3.3: Execution of the EM algorithm for a 2D dataset (courersaClusterAnalysis6).

3.5 Model-based methods
Model based similarity tries to find higher-level structures on a more global scale. Apriori
knowledge about the process can be used for improving the dissimilarity measure. HMM
(Ghassempour2014), SAR-HMM (Mesot2006), utilizing model based distances (as ex-
plained in section 2.4) and SVM (Alvarez2010) are common for model-based clustering.

Wang2011; Strelioff2014; semanticsInMultipleTimeSeries go one step further and
try to use variations of HMM in order to find the semantics of time series.

After fitting, the model dissimilarity can be measured between these. Often model based
approaches assume certain regularity conditions, e.g. the time-series have to be stationary
and the underlying processes must be linear.

3.6 Comparison of clustering algorithms
Clustering can be performed on raw data or in a derived space created using features or models.
Such a derived space may be formed either in the time or frequency domain (Fokianos2012;
Wellens2009). The approach which fits best to the specific clustering task has to be chosen.
Fairly generic clustering algorithms like distance based clustering algorithms may be used
either on raw data or in derived space depending on the dissimilarity measure and the input.
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However these can mostly deal only with spherical clusters. Density based methods are
more flexible as arbitrary clusters can be identified. Grid-based methods are independent of
the input. Their runtime only depends on the size of the grid.

There is no objectively "correct" clustering algorithm (Keogh2006a). Similarity can be
confusing and thus is in the eye of the beholder. Choosing the most appropriate clustering
algorithm for a particular problem needs to be conducted experimentally. As superLearner
shows, it is fairly reasonable to combine the results of several algorithms. This might
especially be a good idea as the clustering task will be performed in presence of corrupt data.
Rooyen2015 provides a framework to deal with corrupted data.

The concepts of the proposed algorithms are now applied to time-series data.
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CHAPTER 4
Explanation of the different

application contexts of time-series
clustering

Most problems regarding time series require a matching of similarity. Thus, clustering is
the basis of a variety of problems related to time-series. Depending on the need different
approaches for clustering have been defined. Clustering might consider the similarity of
time-series or be focused on finding repeating patterns. The idea is to identify natural groups
in the data set. The basic problem of clustering is to identify the correct number of clusters.
This holds true for non-time-series based clustering algorithms as well. As already mentioned
in the introduction most techniques assume static data. Therefore, time series need a special
treatment. As agronomyTSClustering concludes, it is common to consider a time series T
of length N as a single data instance with N attributes. And use the possibility to apply
the classical techniques. A different approach is to modify classical clustering techniques to
support handling time-series data. Several approaches are outlined in the next section in a
tutorial hands-on like manner.

4.1 Preparation
In general the data will have to be cleaned, e.g. corrput records will have to be identified and
then corrected or removed. But time series require further processing: time-series recorded
at different scales need to be normalized to be comparable (Rakthanmanon2012). Figure
4.1 shows the effect of normalization. As tsclust conclude it is especially important for
distance based clustering algorithms to include a normalization step to prevent common
misunderstandings.

Depending on the approach chosen for clustering e.g. model based clustering there may
be further preparation tasks involved. For example model based distance measures usually

20



Figure 4.1: Unnormalized data greatly overstates the subjective dissimilarity distance
(Ratanamahatana2010).

assume certain regularity conditions, like stationary time-series with a linear process.
Time series usually are a sequence of equally spaced data points. However there a

use cases when such a regularity condition is not fulfilled as for example with credit card
transactions: sometimes there is one transaction per day, sometimes none and sometimes
there are multiple. Such a series is referred to as irregular. As a lot fewer approaches exist
to deal with irregular time-series, converting it into a regular series should be considered.
Sometimes, interpolation like calculating the mean between between two values and filling
the gaps, is possible. But such an approach may not be applicable for certain types of data.
Consider the example from above: credit card transactions are discrete and they either do
happen or not.

4.2 Clustering a set of whole time-series
A lot of time-series clustering algorithms deal with clustering whole series in a set. Identifying
selling patterns or finding stocks that behave similar are good examples for grouping whole
time-series.

4.2.1 Examples
Simple hierarchical and agglomerative clustering

A simple example for hierarchical clustering depicts how easy it is to replace a clustering
algorithm if the distance matrix fits well for the data to be analyzed. In this case dynamic
time warping (DTW) is used.

A classic time-series mining dataset is the control charts dataset developed by Alcock and
Manolopoulos (1999). It contains 600 examples of control charts synthetically generated. The
data can be separated into six different classes: Normal, Cyclic, Increasing trend, Decreasing
trend, Upward shift or Downward shift. Some randomly chosen time-series from this set (see
Section 6.4) can be utilized to show how simple hierarchical clustering can be performed.
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For Example in R performing this task is a two-liner as only the distance matrix has to be
passed to the algorithm. First the data samples from the synthetic control charts time-series
are chosen. Figure 4.2 gives an overview about the randomly chosen series. The rest of the
code is needed for preparation of the data.

s c=read . t a b l e ("~/ pathToData/ sc . data . t x t " ,
+ quote ="\"" , comment . cha r ="")
n=2
s <− sample ( 1 : 100 , n )
i d x <− c ( s , 100+s , 200+s , 300+s , 400+s , 500+s )
sample2 <− sc [ idx , ]
o b s e r v e dLab e l s <− c ( r ep (1 , n ) , r ep (2 , n ) , r ep (3 , n ) ,
+rep (4 , n ) , r ep (5 , n ) , r ep (6 , n ) )

l i b r a r y ( dtw )
l i b r a r y ( c l u s t e r )

d i s tMa t r i x <− d i s t ( sample2 , method="DTW")

hc <− h c l u s t ( d i s tMa t r i x , method="ave rage " )
p l o t ( hc , l a b e l s=obs e r v edLabe l s , main="")

Changing only a few lines instead of top down-hierarchical clustering an agglomerative
approach can be pursued based on the same DTW distance matrix. Figure 4.3 shows the
dendogram generated by hierarchical clustering and Figure 4.4 the dendogram created by the
agglomerative approch. It can be clearly seen that the order of the dendograms is inverted.

ag <− agnes ( d i s tMa t r i x , method="ave rage ")
p l o t ( ag , l a b e l s=ob s e r v edLabe l s , main="")

4.2.2 HMM
Hidden Markov models are a popular choice of model-based algorithms used for sequential
data-mining. They are based on the assumption that the system being modeled follows a
Markov process. For a simple Markov model as depicted in Figure 4.5 the state is visible to
the observer. This simple model contains two states A and E and the probabilities of the
choices. In Hidden Markov models the state is hidden. However the output ins dependent on
the state and thus the original states can be reconstructed. Ghassempour2014a formulate
a simple example of a HMM in the context of health care. Such a "Health HMM" contains
two hidden health states: sick and healthy as well as the probabilities for the transitions
between these states. Instead of observering the states blood temperature and the amount of
white blood cells is tracked. As the output is dependent on the hidden state we can infer
whether the person was sick or not.
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Figure 4.3: Hierarical clustering of synthetic control time-series data
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Figure 4.4: Agglomerative clustering of synthetic control time-series data
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Figure 4.5: A very simple Markov Model containing two states (markovSimple).

HMM’s are very popular in applications like speech recognition or other fields where the
temporal character of the data is important. The interested read will find a lot of literature
regarding HMM on the internet. introHMM provide a good introduction to HMM.

Example

Ghassempour2014a use a HMM to cluster multivariate time-series with categorical and
continuous variables. They deal with representation of health trajectories of individuals. They
try to keep their approach in a fairly simple way in order to make their results accessible to a
wider audience which might not possess advanced statistical knowledge. As such they use
already existing packages from R. For the implementation of HMM the depmixS4 package
using Expectation Maximization (EM) is used. They explored several algorithms but the best
results were reached utilizing Partitioning Around Medoids (PAM) from the cluster package.
To combine these building blocks a distance measure is needed. Ghassempour2014a propose
the following distance: The idea is that the likelyhood P (T |λi) is used as a probability density
on the health trajectories. One good example from literature for a distance measure between
probability densities is the Kullback-Leibler divergence measured between two densities
P (T |λi), P (T |λj) of the to models λi, λj .

dKL(P (T |λi), P (T |λi)) ≡
∫
dTP (T |λj) log

(
P (T |λi)
P (T |λj)

)

T denotes a multivariate time-series. This is fairly hard to compute. Therefore Ghassempour2014a
suggest a compromise between a Markov Monte Carlo (MCMC) estimation strategy and a
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one-point estimation. As such they replace the probability density with a discrete probability
distribution.

4.2.3 Spectral clustering
Spectral analysis of time-series analyzes the variance over the frequency. In general it is
very suitable for analysis of periodic signals corrupted by noise (Cowpertwait2011). Thus
spectral analysis is well suited for time-series as Wang2005a; Jebara2007 show.

yoshkkk introduced a general spectral distance:

dw(X,Y) = 1
4π

π∫
−π

W

(
fX(λ)
fY (λ)

)
dλ

fX(λ) and fY (λ) are the spectral densities of the time-series X and Y. W (·) is a function
to satisfy regular conditions in order to keep distance-like attributes. As fX(λ) and fY (λ)
are unknown for practical applications they need to be estimated. Fan1998; tsclust show
three possibilities:

• dW (DLS) uses local linear smoothers

• dW (LS) uses exponential transformation of locally smoothed log-radiograms

• dW (LK) but instead of using least squares like dW (LS) it uses maximum local likelihood
criterion

Example

The R packages TSclust and cluster allow to perform spectral clustering easily.x

l i b r a r y ( TSc lu s t )
l i b r a r y ( c l u s t e r )
d f = as . data . f rame ( t ( as . mat r i x ( sample2 ) ) )
IP . d i s <− d i s s ( df , " INT .PER")
IP . h c l u s <− h c l u s t ( IP . d i s )
p l o t ( IP . hc l u s , l a b e l s=ob s e r v edLabe l s , main="")

Figure 4.6 depicts the result of clustering the same set of synthetic control series used above.
It can be seen that the result is fairly different from other approaches mentioned earlier. But
still for most of the clusters it is true that 4, 6 and 1, 3, 5 are separated.

4.2.4 Permutation-based clustering
Similar to compression based approaches permutation distribution clustering is an alternative
complexity-based procedure. The core part of this approach is a m-dimensional embedding
which is sorted and permuted in order to measure divergence of patterns.

χ
′
m ≡

{
X′
m = (Xt, Xt+1, . . . , Xt+m), t = 1, . . . ,T−m

}
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Figure 4.6: Clustering the same synthetic control series using a spectral approach.

A permutation Π(X′
m) is obtained for each X′

m ∈ χ
′
m by sorting X′

m, the so called codebook
of X′

m. The complexity is characterized by the codebook of XT , where T refers to the time-
index of the time-series X. It is defined as the distribution of the permutations on χ′

m, P (XT ).
Thus now dissimilarity can be defined as the discrepancies between the codebooks of XT

and YT . As the choice of m is crucial to obtain a valuable clustering result a heuristic was
presented by cranpdc and is available in the pdc package.

Example

Here we show how simple permutation-based clustering can be performed using the pdc
package.

l i b r a r y ( pdc )
p l o t ( p d c l u s t ( d f ) , c o l s=ob s e r v edLabe l s , l a b e l s= ob s e r v e dLab e l s )

Figure 4.7 depicts the result of clustering the same set of synthetic control series used above.
Similar to Figure 4.6 again the result differs compared to previous approaches. But here it is
not true that 4, 6 and 1, 3, 5 are separated.
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Figure 4.7: Clustering the same synthetic control series using permutation-based approach.

4.2.5 funFEM - functional mixture models
bikeSharing recently introduced a new algorithm for clustering of time-series. The algorithm
allows for model based clustering of time-series or more general functional data and is
called funFEM. Functional data (http://www.psych.mcgill.ca/misc/fda/) tries
to describe the data as spline functions. funFEM is based on functional mixture models which
allow for clustering in a discriminative functional subspace. Bike sharing is fairly popular in a
lot of big cities. However the bikes have to be spread about a city evenly in order to ensure
that a bike station is neither empty nor too full. Bike sharing systems (BSS) usually allow for
real-time reports of bike stations, which often results in a collection of very large amounts of
data. Thus automatic algorithms need to be used for the analysis. Clustering is often used
for such purposes. bikeSharing explain that former research focused on classifying usage
profiles of BSS. Froehlich2008 were one of the first ones to analyze BSS data. However they
only used traditional clustering approaches which cannot exploit the temporal dynamic of the
data. Others like (Lathia2012; Vogel2011) are still limited to one BSS (one city) and do
not make use of the functional nature of the data. Figure 6.2 and Figure 4.8 show the bike
stations clustered by when they get bikes. The latter also depicts the clustering result in a
spatial context. It can be clearly seen that the result differs on weekends and the location of
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the bike station. Using funFEM presents the advantage to be parsimonious. Therefore it is

Figure 4.8: Map of the clustering results for Paris stations (bikeSharing).

well suited for handling long time series.
This algorithm can easily be explored in a simple example (bikeSharing):

l i b r a r y ( funFEM)
b a s i s <− c r e a t e . b s p l i n e . b a s i s ( c (0 , 365) , n b a s i s =21, no rde r=4)
f d o b j <− smooth . b a s i s ( day . 5 , Canad ianWeather$da i l yAv [ , , "

↪→ Temperature .C " ] , b a s i s ,
fdnames= l i s t ( "Day " , " S t a t i o n " , "Deg C") ) $ fd

r e s = funFEM( fdob j ,K=4)

par (mfrow=c (1 , 2 ) )
p l o t ( fdob j , c o l=r e s $ c l s , lwd=2, l t y =1)
fdmeans = f d ob j ; f dmeans$coe f s = t ( res$prms$my )
p l o t ( fdmeans , c o l =1:max( r e s $ c l s ) , lwd=2)

Figure 4.9 depicts the result of clustering the "Canadaian temperature" dataset.
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Figure 4.9: Clustering the well-known "Canadian temperature" data using funFEM
(bikeSharing).

4.2.6 WEKA for time-series clustering
WEKA http://www.cs.waikato.ac.nz/ml/weka/ is an open sourced collection of
machine learning algorithms which can be used either via a GUI or an API. It is developed by
the University of Waikato in New Zealand. It is implemented in Java and fairly user friendly.
Figure 4.10 shows how WEKA can be used to use clustering without programming.

4.3 Identification and grouping of patterns within a single
time-series

Often it is very interesting to collect insights from pieces within a time-series. Clustering
subsequences usually means slicing a single or multiple time-series into pieces and grouping
these pieces into classes. These pieces can be obtained using feature extraction algorithms or
constant segmentation. Some methods choose to slice in non-overlapping windows based on
the periodical structure of the series. (Hebrail2001) In case this structure is weak or not
present at all non-overlapping slicing may miss important structures. Thinking forward the
next step would be to use overlapping structures. However (Keogh2004) drew the conclusion
that this is meaningless. They propose a solution to this problem clustering motifs to prevent
trivial matches. (Liu2005; Fu2005) tries to find motifs in a "meaningful" way to re-enable
subsequence clustering. (Goldin2006) proposes a new distance measure for this purpose. It
is based on the shape of the cluster.
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Figure 4.10: WEKA for clustering using EM and density based clustering

4.3.1 Examples visualizing sub-sequences
Grammarviz is a nice tool to visualize patterns in time-series. Figure 4.11 shows subsequences
calculated from recurrent patterns identified in the AirPassengers dataset using Grammarviz.

4.4 Smart pattern detection and outlier analysis
Clustering and outlier detection are in a complementary relationship. (Aggarawal2013)

In contrast to subsequence matching, anomaly detection deals with identifying previously
not known patterns. The idea is to recognize surprising patterns. In general a surprising
behavior is defined as behavior which deviates from "normal" state however this context
dependent and subjective. As a lot of anomaly detection algorithms rely on modeling normal
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Figure 4.11: Recurrent patterns in the AirPassengers dataset

behavior with a set of typical shapes and predict dissimilar shapes motif discovery is a key part
of such an algorithm. A motif is an important subsequence or pattern within a time-series.
The definition from (saxSeries) is very suitable as they define an anomalous pattern as a
pattern where the frequency of occurrences significantly differs from what would be expected.

The knowledge drawn from clustering the data can also be applied to classify outliers.
Here values that are far away may be more interesting than common cases. A very common
application of outlier detection is fraud detection in e-commerce transactions or recently in
big-data security analytics.

Outlier detection can be performed in several ways. Proximity based models utilizing clus-
tering are one basic and common way to detect outliers. (Aggarawal2013) Thiprungsri2012
applies clustering to automate fraud filtering during an accounting audit.
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4.5 Change point detection
Segmenting a time-series into pieces of (nearly) constant values can be used to drastically
reduce noise, dimensionality and save storage space and processing power. As such it is a topic
very related to the representation of time-series which was explained in Section 1.2.1. Change
point detection is similar, but tries to gain analytical value through intelligent algorithms to
detect structural changes in a system, this means identifying points in time where the trend
changed. Several approaches exist for such a purpose. Clustering is one of them (James).

4.5.1 Example
The R package ecp allows for easy utilization of change point detection. The key advantages
of using the ecp package are the nonparametric nature of the algorithms and the possibility
to use them for multivariate data and multiple change points.

This code is used to detect the change points in the sample dataset of the synthetic time
series which was introduced earlier.

l i b r a r y ( ggp l o t 2 )
l i b r a r y ( r e shape2 )
l i b r a r y ( ecp )

s y n t h e t i c _ c o n t r o l . data <− r ead . t a b l e ("/ Use r s / g eoHe i l /Dropbox /6 .
↪→ Semester / Bache l o rThe s i s / rRe s ea r ch / data / s y n t h e t i c _ c o n t r o l .
↪→ data . t x t " , quote ="\"" , comment . cha r ="")

n <− 2

s <− sample ( 1 : 100 , n )
i d x <− c ( s , 100+s , 200+s , 300+s , 400+s , 500+s )
sample2 <− s y n t h e t i c _ c o n t r o l . data [ idx , ]
d f = as . data . f rame ( t ( as . mat r i x ( sample2 ) ) )

#c a l c u l a t e the change p o i n t s
changeP <− e . d i v i s i v e ( as . mat r i x ( d f [ 1 ] ) , k=8, R = 400 , a lpha =

↪→ 2 , min . s i z e = 3)
changeP = changeP$es t imate s
changeP = changeP[−c (1 , l e n g t h ( changeP ) ) ]

changePo in t s = data . f rame ( changeP , v a r i a b l e=colnames ( d f ) [ 1 ] )
f o r ( s e r i e s i n 2 : n co l ( d f ) ) {

changeP <− e . d i v i s i v e ( as . mat r i x ( d f [ s e r i e s ] ) , k=8, R = 400 ,
↪→ a lpha = 2 , min . s i z e = 3)

changeP = changeP$es t imate s
changeP = changeP[−c (1 , l e n g t h ( changeP ) ) ]
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changePo in t s = rb i n d ( changePo int s , data . f rame ( changeP ,
↪→ v a r i a b l e=colnames ( d f ) [ s e r i e s ] ) )

}

# p l o t
d f $ i d = 1 : nrow ( d f )
d fMe l t <− r e shape2 : : me l t ( df , i d . v a r s = " i d " )
p = ggp l o t ( dfMelt , ae s ( x=id , y=va l u e ) )+geom_l ine ( c o l o r = "

↪→ s t e e l b l u e " )+ f a c e t_g r i d ( v a r i a b l e ~ . , s c a l e s = ’ f ree_y ’ )
p + geom_vl ine ( aes ( x i n t e r c e p t=changeP ) , data=changePo int s ,

↪→ l i n e t y p e =’dashed ’ , c o l o u r =’ darkgreen ’ )

Figure 4.12 the result of change point detection using time-series clustering of the ecp
package.

Sometimes it is important to get an overview about the data very quickly. Tools like
Tableau allow for this. Tableau supports a decent R integration. Integration of R with tools
like Tableau are possible to utilize R for change point detection. Such a setup allows for easy
change point detection even if the end-user is not sufficiently fluent with R.
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CHAPTER 5
Summary and interesting problems

A broad variety of researchers has been interested in time series clustering. As the data are
frequently high dimensional and may contain outliers, careful examination of the algorithm is
important. We have shown that clustering is the basis of time-series data mining and has
a lot of important applications. The need for efficient clustering of time-series will become
more and more important as even more data is stored & thus analyzed in a time context.
Even though some approaches for clustering time-series seem to be fairly complicated, we
hope that we could show that there are some very hands-on and simple tools to solve them.

The following interesting problems for further research have been identified:

• Streaming time series and real-time analysis: these problems are especially interesting
for topics like fraud analysis as “we witnessed an explosion of streaming technologies”
(Esling2012) in recent years.

• Distributed time series clustering / mining are important for large organizations as the
needs for collecting, storing and analyzing more data becomes apparent (big-data). As
the amount of data grows, a monolithic system cannot deliver the needed performance.
Therefore, a distributed system using distributed algorithms is needed as most algorithms
today assume a centralized data set.

• An interesting approach for dealing with distributed data is shown by Silva As they
note it is crucial to preserve privacy of sensitive data especially if the sources of data
come from different organizations. Until now there has only been scarce research on
privacy preserving time series mining.

• Location based data adds a whole new dimension to time series. There has been some
research on spatio-temporal data in geology. However, only few tried to apply the
spatial aspect of data to other fields of research.
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• Understanding the semantics of a complex system means understanding its generating
structure. First research has been conducted byWang2011 This is especially interesting
as opposed to only finding isolated historic patterns. The focus is on explaining
relationships between these patterns and understanding semantics.

• The concept of Hierarchical Time Series was proposed in Hyndman2011 This can be
really interesting for forecasting. There are already two R-packages: hts and gtop. The
idea is that time-series may contain a hierarchical structure. Think about a bike shop.
Several different types of bikes are sold. Each type contains further sub-categories.
Observations of the bottom level are aggregated as observations of the level above.

• Selling analytics means converting it into a product (research2business).This means
transforming some hacked together R-scripts into an automated computation system,
as R’s scripting environment is not optimally suited for an automated high performance
environment. There are additional challenges, as selling a product means increasing
usability. One of the major problems of time-series mining is the large number of
parameters induced by the method. So the user is forced to perform a lot of fine-tuning.
Automating the decision of finding the best model maybe via a combination of models
like superLearner proposed could be the topic of further research.
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CHAPTER 6
Appendix

6.1 Figures

Figure 6.1: A hierarchy of all the various time series representations in the literature.. (Debarr)

6.2 Interesting R resources regarding clustering
• tsclust

• tsdist

• dse

• hts
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• gtop

• pdc

• depmixS4

• cluster

• http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_
comparison.html

• https://www.researchgate.net/post/How_to_model_time-series_with_
multiple_seasonalities#551109e6d767a6a1168b463c

• simulation of time-series http://t.co/1tW4G75hSs

6.3 Acquiring test data for time-series clustering
Model based time-series like ARIMA or GARCH can be easily simulated from different
tools like R, matlab or mathematica. http://reference.wolfram.com/language/
example/SimulateTimeSeriesData.html

6.4 Datasets
Here are some datasets for comparing time-series algorithms.

• http://www.cs.ucr.edu/~eamonn/time_series_data/

• http://cran.r-project.org/web/views/SpatioTemporal.html

• http://kdd.ics.uci.edu/databases/synthetic_control/synthetic_
control.html

Generating sample data is possible. In case the problem is model based. The code snipped
shows a simple ARIMA simulation.

t s . s im <− ar ima . s im ( l i s t ( o r d e r = c (2 , 1 , 1 ) , a r = 0 . 8 ) , n
↪→ = 256)

t s . p l o t ( t s . s im )

An example which is a bit more complicated including seasonality can be found http:
//stats.stackexchange.com/questions/125946 here. ETS based:

f i t <− e t s ( USAccDeaths )
p l o t ( USAccDeaths , x l im=c (1973 ,1982) )
i n e s ( s imu l a t e ( f i t , 36) , c o l="red ")
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Figure 6.2: Cluster mean profiles (bikeSharing).
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